Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-throughput screening of the yeast kinome: identification of human serine/threonine protein kinases that phosphorylate the hepatitis C virus NS5A protein.

Identifieur interne : 001894 ( Main/Exploration ); précédent : 001893; suivant : 001895

High-throughput screening of the yeast kinome: identification of human serine/threonine protein kinases that phosphorylate the hepatitis C virus NS5A protein.

Auteurs : Carlos Coito [États-Unis] ; Deborah L. Diamond ; Petra Neddermann ; Marcus J. Korth ; Michael G. Katze

Source :

RBID : pubmed:15016873

Descripteurs français

English descriptors

Abstract

The hepatitis C virus NS5A protein plays a critical role in virus replication, conferring interferon resistance to the virus through perturbation of multiple intracellular signaling pathways. Since NS5A is a phosphoprotein, it is of considerable interest to understand the role of phosphorylation in NS5A function. In this report, we investigated the phosphorylation of NS5A by taking advantage of 119 glutathione S-transferase-tagged protein kinases purified from Saccharomyces cerevisiae to perform a global screening of yeast kinases capable of phosphorylating NS5A in vitro. A database BLAST search was subsequently performed by using the sequences of the yeast kinases that phosphorylated NS5A in order to identify human kinases with the highest sequence homologies. Subsequent in vitro kinase assays and phosphopeptide mapping studies confirmed that several of the homologous human protein kinases were capable of phosphorylating NS5A. In vivo phosphopeptide mapping revealed phosphopeptides common to those generated in vitro by AKT, p70S6K, MEK1, and MKK6, suggesting that these kinases may phosphorylate NS5A in mammalian cells. Significantly, rapamycin, an inhibitor commonly used to investigate the mTOR/p70S6K pathway, reduced the in vivo phosphorylation of specific NS5A phosphopeptides, strongly suggesting that p70S6 kinase and potentially related members of this group phosphorylate NS5A inside the cell. Curiously, certain of these kinases also play a major role in mRNA translation and antiapoptotic pathways, some of which are already known to be regulated by NS5A. The findings presented here demonstrate the use of high-throughput screening of the yeast kinome to facilitate the major task of identifying human NS5A protein kinases for further characterization of phosphorylation events in vivo. Our results suggest that this novel approach may be generally applicable to the screening of other protein biochemical activities by mechanistic class.

DOI: 10.1128/jvi.78.7.3502-3513.2004
PubMed: 15016873
PubMed Central: PMC371080


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High-throughput screening of the yeast kinome: identification of human serine/threonine protein kinases that phosphorylate the hepatitis C virus NS5A protein.</title>
<author>
<name sortKey="Coito, Carlos" sort="Coito, Carlos" uniqKey="Coito C" first="Carlos" last="Coito">Carlos Coito</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Diamond, Deborah L" sort="Diamond, Deborah L" uniqKey="Diamond D" first="Deborah L" last="Diamond">Deborah L. Diamond</name>
</author>
<author>
<name sortKey="Neddermann, Petra" sort="Neddermann, Petra" uniqKey="Neddermann P" first="Petra" last="Neddermann">Petra Neddermann</name>
</author>
<author>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J" last="Korth">Marcus J. Korth</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15016873</idno>
<idno type="pmid">15016873</idno>
<idno type="pmc">PMC371080</idno>
<idno type="doi">10.1128/jvi.78.7.3502-3513.2004</idno>
<idno type="wicri:Area/Main/Corpus">001893</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001893</idno>
<idno type="wicri:Area/Main/Curation">001893</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001893</idno>
<idno type="wicri:Area/Main/Exploration">001893</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High-throughput screening of the yeast kinome: identification of human serine/threonine protein kinases that phosphorylate the hepatitis C virus NS5A protein.</title>
<author>
<name sortKey="Coito, Carlos" sort="Coito, Carlos" uniqKey="Coito C" first="Carlos" last="Coito">Carlos Coito</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Diamond, Deborah L" sort="Diamond, Deborah L" uniqKey="Diamond D" first="Deborah L" last="Diamond">Deborah L. Diamond</name>
</author>
<author>
<name sortKey="Neddermann, Petra" sort="Neddermann, Petra" uniqKey="Neddermann P" first="Petra" last="Neddermann">Petra Neddermann</name>
</author>
<author>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J" last="Korth">Marcus J. Korth</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Cell-Free System (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Hepacivirus (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Peptide Mapping (MeSH)</term>
<term>Phosphopeptides (chemistry)</term>
<term>Phosphopeptides (metabolism)</term>
<term>Phosphorylation (drug effects)</term>
<term>Protein Kinase Inhibitors (MeSH)</term>
<term>Protein Kinases (chemistry)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (chemistry)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (antagonists & inhibitors)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (metabolism)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sequence Homology (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Substrate Specificity (MeSH)</term>
<term>TOR Serine-Threonine Kinases (MeSH)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Cartographie peptidique (MeSH)</term>
<term>Hepacivirus (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Inhibiteurs de protéines kinases (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Phosphopeptides (composition chimique)</term>
<term>Phosphopeptides (métabolisme)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Protein kinases (composition chimique)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (composition chimique)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (antagonistes et inhibiteurs)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (métabolisme)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Similitude de séquences (MeSH)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Système acellulaire (MeSH)</term>
<term>Sérine-thréonine kinases TOR (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phosphopeptides</term>
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Phosphopeptides</term>
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hepacivirus</term>
<term>Phosphopeptides</term>
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hepacivirus</term>
<term>Phosphopeptides</term>
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines virales non structurales</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Cell-Free System</term>
<term>Computational Biology</term>
<term>Humans</term>
<term>Peptide Mapping</term>
<term>Protein Kinase Inhibitors</term>
<term>Sequence Homology</term>
<term>Substrate Specificity</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biologie informatique</term>
<term>Cartographie peptidique</term>
<term>Humains</term>
<term>Inhibiteurs de protéines kinases</term>
<term>Lignée cellulaire</term>
<term>Similitude de séquences</term>
<term>Spécificité du substrat</term>
<term>Système acellulaire</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The hepatitis C virus NS5A protein plays a critical role in virus replication, conferring interferon resistance to the virus through perturbation of multiple intracellular signaling pathways. Since NS5A is a phosphoprotein, it is of considerable interest to understand the role of phosphorylation in NS5A function. In this report, we investigated the phosphorylation of NS5A by taking advantage of 119 glutathione S-transferase-tagged protein kinases purified from Saccharomyces cerevisiae to perform a global screening of yeast kinases capable of phosphorylating NS5A in vitro. A database BLAST search was subsequently performed by using the sequences of the yeast kinases that phosphorylated NS5A in order to identify human kinases with the highest sequence homologies. Subsequent in vitro kinase assays and phosphopeptide mapping studies confirmed that several of the homologous human protein kinases were capable of phosphorylating NS5A. In vivo phosphopeptide mapping revealed phosphopeptides common to those generated in vitro by AKT, p70S6K, MEK1, and MKK6, suggesting that these kinases may phosphorylate NS5A in mammalian cells. Significantly, rapamycin, an inhibitor commonly used to investigate the mTOR/p70S6K pathway, reduced the in vivo phosphorylation of specific NS5A phosphopeptides, strongly suggesting that p70S6 kinase and potentially related members of this group phosphorylate NS5A inside the cell. Curiously, certain of these kinases also play a major role in mRNA translation and antiapoptotic pathways, some of which are already known to be regulated by NS5A. The findings presented here demonstrate the use of high-throughput screening of the yeast kinome to facilitate the major task of identifying human NS5A protein kinases for further characterization of phosphorylation events in vivo. Our results suggest that this novel approach may be generally applicable to the screening of other protein biochemical activities by mechanistic class.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15016873</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>78</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2004</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>High-throughput screening of the yeast kinome: identification of human serine/threonine protein kinases that phosphorylate the hepatitis C virus NS5A protein.</ArticleTitle>
<Pagination>
<MedlinePgn>3502-13</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The hepatitis C virus NS5A protein plays a critical role in virus replication, conferring interferon resistance to the virus through perturbation of multiple intracellular signaling pathways. Since NS5A is a phosphoprotein, it is of considerable interest to understand the role of phosphorylation in NS5A function. In this report, we investigated the phosphorylation of NS5A by taking advantage of 119 glutathione S-transferase-tagged protein kinases purified from Saccharomyces cerevisiae to perform a global screening of yeast kinases capable of phosphorylating NS5A in vitro. A database BLAST search was subsequently performed by using the sequences of the yeast kinases that phosphorylated NS5A in order to identify human kinases with the highest sequence homologies. Subsequent in vitro kinase assays and phosphopeptide mapping studies confirmed that several of the homologous human protein kinases were capable of phosphorylating NS5A. In vivo phosphopeptide mapping revealed phosphopeptides common to those generated in vitro by AKT, p70S6K, MEK1, and MKK6, suggesting that these kinases may phosphorylate NS5A in mammalian cells. Significantly, rapamycin, an inhibitor commonly used to investigate the mTOR/p70S6K pathway, reduced the in vivo phosphorylation of specific NS5A phosphopeptides, strongly suggesting that p70S6 kinase and potentially related members of this group phosphorylate NS5A inside the cell. Curiously, certain of these kinases also play a major role in mRNA translation and antiapoptotic pathways, some of which are already known to be regulated by NS5A. The findings presented here demonstrate the use of high-throughput screening of the yeast kinome to facilitate the major task of identifying human NS5A protein kinases for further characterization of phosphorylation events in vivo. Our results suggest that this novel approach may be generally applicable to the screening of other protein biochemical activities by mechanistic class.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coito</LastName>
<ForeName>Carlos</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Diamond</LastName>
<ForeName>Deborah L</ForeName>
<Initials>DL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Neddermann</LastName>
<ForeName>Petra</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Korth</LastName>
<ForeName>Marcus J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Katze</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DA015625</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI047304</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30DA015625</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI47304</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C087036">NS-5 protein, hepatitis C virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010748">Phosphopeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047428">Protein Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D038762">Ribosomal Protein S6 Kinases, 70-kDa</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002474" MajorTopicYN="N">Cell-Free System</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016174" MajorTopicYN="N">Hepacivirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010449" MajorTopicYN="N">Peptide Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010748" MajorTopicYN="N">Phosphopeptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047428" MajorTopicYN="N">Protein Kinase Inhibitors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038762" MajorTopicYN="N">Ribosomal Protein S6 Kinases, 70-kDa</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017385" MajorTopicYN="Y">Sequence Homology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15016873</ArticleId>
<ArticleId IdType="pmc">PMC371080</ArticleId>
<ArticleId IdType="doi">10.1128/jvi.78.7.3502-3513.2004</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 Nov 5;286(5442):1153-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Jul;69(7):3980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7769656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 1995;22(1 Suppl):83-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7602083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1995 Jul;96(1):224-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7542279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1996 Jan 11;334(2):77-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8531962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4076-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8633019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1997 Jan;22(1):18-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 May;71(5):3652-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9094639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 May 30;272(22):14489-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9162092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Oct;71(10):7187-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9311791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Nov 12;201(1-2):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Dec;9(6):782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Jul;72(7):6199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9621090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Sep;18(9):5208-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9710605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Apr 21;257(3):777-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10208859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1999 Apr 25;257(1):130-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10208927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jun 4;274(23):16604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10347227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jul 2;285(5424):110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10390360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7138-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Sep 24;274(39):28011-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10488152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Mar 24;275(12):8271-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10722653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Jul;74(14):6520-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1999;68:965-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Nov;26(3):283-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Dec 20;278(2):501-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 May 25;284(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2001 Aug;22(3):369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11482998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Aug 15;20(16):4349-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Sep;76(18):9207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12186904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 25;277(43):40281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Dec 6;298(5600):1912-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12471243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Mar;84(Pt 3):535-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Breast Cancer. 2003 Jun;4(2):126-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12864941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Dec;73(12):9984-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559312</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Diamond, Deborah L" sort="Diamond, Deborah L" uniqKey="Diamond D" first="Deborah L" last="Diamond">Deborah L. Diamond</name>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J" last="Korth">Marcus J. Korth</name>
<name sortKey="Neddermann, Petra" sort="Neddermann, Petra" uniqKey="Neddermann P" first="Petra" last="Neddermann">Petra Neddermann</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Coito, Carlos" sort="Coito, Carlos" uniqKey="Coito C" first="Carlos" last="Coito">Carlos Coito</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001894 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001894 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15016873
   |texte=   High-throughput screening of the yeast kinome: identification of human serine/threonine protein kinases that phosphorylate the hepatitis C virus NS5A protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15016873" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020